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ABSTRACT

This paper gives guidelines for the development of computer programs for

the numerical simulation of semiconductor devices. For this purpose the basic

mathematical results on the corresponding elliptic boundary value problem are

reviewed. In particular, existence, smoothness and structure of the solutions

of the fundamental semiconductor equations are discussed. Various feasible

approaches to the numerical solution of the semiconductor equations are described.

Much emphasis is placed on constructive remarks to help authors of device simula-

tion programs to make decisions on their code design problems. In particular,

criteria for an optimal mesh generation strategy are given. The iterative solution

of the systems of nonlinear and linear equations obtained by discretising the semi-

conductor equations is discussed. An example is given showing the power of these

concepts combined with modern numerical methods in comparison to classical approaches.
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SIGNIFICANCE AND EXPLANATION

Many different codes for the simulation of semiconductor devices such as

transitors, diodes, thyristors are already circulated. Most of them solve the

basic set of semiconductor equations in the steady state case, which represents

a nonlinear system of three second order elliptic equations. During the last

15 years this problem has also been the subject of analytical investigations by

researchers from different disciplines. This paper reviews how some results of

"* these investigations can be used to improve the performance of numerical methods

for solving the semiconductor equations. The qualitative analysis of the problem

shows how appropriate finite difference and finite element methods can be con-

structed and what criteria have to be used in an adaptive mesh selection strategy

in order to require a minimal amount of gridpoints while still providing a

sufficiently accurate solution. Various questions concerning the solution of the

large, sparse, nonlinear system of algebraic equations which arise in these calcu-

lations are also discussed.
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IMPLICATIONS OF ANALYTICAL INVESTIGATIONS

ABOUT THE SEMICONDUCTOR EQUATIONS ON DEVICE MODELING PROGRAMS

Ch. Ringhofer and S. Selberherr

1. Introduction

The characteristic feature of early device modeling is the
separation of the interior of the device into different regions,
the treatment of which could be simplified by various assumptions

like special doping profiles, complete depletion and

quasineutrality. These separately treated regions were simply

put together to produce the overall solution. If results in an
analytically closed form are intended, any other approach is

prohibitive. Fully numerical modeling based on partial

differential equations /61/ which describe all different regions
of semiconductor devices in one unified manner was first

suggested by Gummel /29/ for the one dimensional bipolar

transistor. This approach was further developed and applied to

pn-junction theory by De Mari /13/, /14/ and to IMPATT diodes by
Scharfetter and Gummel /50/.

A two dimensional numerical analysis of a semiconductor
device was carried out first by Kennedy and O'Brien /35/ who
investigated the junction field effect transistor. Since then

two dimensional modeling has'been applied to fairly all important
semiconductor devices. There are so many papers of excellent

repute that it would be unfair to cite only a few. Recently also
the first results on three dimensional device modeling have been

published. Time dependence has been investigated by e.g. /37/,

/44/ and models in three space dimensions have been announced by
e.g. /8/, /11/, /67/, /68/.
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In spite of all these important and successful activities,

the need for economic and highly user oriented computer programs

became more and more apparent in the field of device modeling.

Especially for MOS devices which have evolved since their

invention by Kahng and Atalla /32/ to an incredible standard,

modeling in two space dimensions has become inherently important

because current flow controlled by a perpendicular field is an

intrinsically two dimensional problem. One such program which

has been applied successfully in many laboratories is called

CADDET /59/. We have also tried to bridge that gap and developed

MINIMOS /53/, /51/ for the two dimensional static analysis of

planar MOS transistors.

2. Analysis of the Static Semiconductor Equations

In this chapter we review some of the existing analytical

results for the fundamental semiconductor equations concerning

existence and structure of their solutions. These results are of

importance in both the theoretical and practical context, since -

as we will see in the next chapter - the knowledge of the

structure and smoothness properties of solutions is indeed

essential for the development of a numerical solution method.

The most familiar model of carrier transport in a semiconductor

device has been proposed by Van Roosbroeck /61/. It consists of

Poisson's equation (2.1), the current continuity equations for

electrons (2.2) and holes (2.3) and the current relations for

electrons (2.4) and holes (2.5)

div C-grad - -q-( p - n + C ) (2.1)

div Jn -q.R (2.2)

divp - q-R (2.3)
p

n -q-( J*ngrad 4- D *grad n ) (2.4)
n n n

p- -q.( Pp p-grad WP + Dp*grad p ) (2.5)

-2-
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These relations form a system of coupled partial

differential equations. Poisson's equation, coming from

Maxwell's laws, describes the charge distribution in the interior

of a semiconductor device. The balance of sinks and sources for

electron- and hole currents is characterized by the continuity

equations. The current relations describe the absolute value,

direction and orientation of electron- and hole currents. The

continuity equations and the current relations can be derived

from Boltzmann's equation by not at all trivial means. It is not

our intention to present in this paper the ideas behind these

considerations. The interested reader is refered to /61/ and its

secondary literature or text books on semiconductor physics e.g.

/7/, /31/, /52/, /56/.

2.1 The Validity of the Basic Semiconductor Equations

It is of prime importance to be aware that equations (2.4)

and (2.5) are not capable to describe exactly all phenomena

occuring in real devices. For instance, they do not characterize

effects which are caused by degenerate semiconductors (e.g. heavy

doping). /38/, /60/, /63/ discuss some modifications of the

current relations, which partially take into account the

consequences introduced by degenerate semiconductors (e.g.

invalidity of Boltzmann's statistics, bandgap narrowing). These

modifications are not at all simple and lead to problems

especially in the formulation of boundary conditions /47/, /62/.

In case of modeling MOS devices, degeneracy, owing to the

relatively low doping in the channel region, is practically

irrelevant. For modern bipolar devices, though, bearing in mind

shallow and extraordinarily heavily doped emitters, it is an

absolute necessity to account for local degeneracy of the

s4miconductor.

Just as further examples (2.4) and (2.5) do not describe

velocity overshoot phenomena which become apparent at feature

lengths of 0.lPm for silicon and lpm for gallium-arsenide /25/.

-3-



Certainly no effects which are due to ballistic transport (the

existence of which is still questionable /30/) are included. The

latter start to become important for feature sizes below 0.Olm

for silicon and 0.1)#m for gallium-arsenide /26/. Considering the ""
state of the art of device miniaturization, neither effect has to
bother the modelists of silicon devices. For gallium-arsenide

devices new ideas are mandatory in the near future /25/, /46/,

/45/.

2.2 Domain and Boundary Conditions

Most of the existing programs which solve the semiconductor

equations are restricted to a rectangular device geometry. This

is not essential as far as the analysis of the equations is

concerned. In this chapter we shall assume that the equations

(2.1)-(2.5) are posed in a domain D of R (n-1,2,3) with a
piecewise smooth boundary 3D. Equations (2.1)-(2.5) are subject

to a mixed set of Dirichlet and Neumann boundary conditions.

That means ID consists of three parts SD-3DYUD 2 USD 3 . ID1
denotes the part of the boundary where the device is surrounded

by insulating material. There one assumes the boundary

conditions:

$W/Sii- ISn'j- Sp/4ig- 0 (2.6)

Here 'Ej denotes the unit normal vector on OD which exists

anywhere except at a finite number of points (arbitrarily defined
corners of the simulation geometry). 3D2 denotes the part of the

boundary corresponding to the ohmic contacts. There W, n and p

are prescribed. The boundary conditions can be derived from the
applied bias and the assumptions of thermal equilibrium and

vanishing space charge:

2" D+  ult- n np - ni2, n - p -C - 0 (2.7| .)'

The last two conditions in (2.7) can be rewritten as:

-4-
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n 11 +n2 + C)/2
_ 12.8)

.- '. p , ( 2 4-C) /2

In many applications it is desired to consider controlled

insulator-semiconductor interfaces (e.g. MOS devices). So OD 3

denotes the part of the boundary which corresponds to such an

interface. There we have the interface conditions:

n'nl " ,Pn1 0

(2.9)

sem O 'Isem ins ' i11 ins

Again 7" denotes the normal vector on ID. Csem and Cin s

denote the permittivity constants for the semiconductor and the

insulator respectively. Ef/ Inj and W/o denote the
sem in

onesided limits of the derivatives perpendicular to the interface

approaching the interface. Within the insulator the Laplace

equation: div grad W - 0 holds.

2.3 Dependent Variables

For analytical purposes it is often useful to use other
variables than n and p to describe the system (2.1)-(2.5). Two
other sets of variables which are frequently employed are

(Y,1 n, p) and (lu,v) which relate to the set (,n,p) by:
,"p

ft - ni p nep /Ut(2.10)

Sni *e p nie 2.11)

.7. (2.10) can be physically interpreted as the application of

Boltzmann statistics. However (2.10) a.,zo can be regarded as a
purely mathematical change of variablea, so that the question of

.- -5-
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the validity of the Boltzmann statistics does not need to be
considered. The use of (t , ln ) a priori excludes negative

nP
carrier densities n and p, which may be present as undesired

nonphysical solutions of (2.1)-(2.5) if we use (yWnp) or (qu,v)

as dependent variables. As we will see later in this chapter the

advantage of the set (pu,v) is that the continuity equations

(2.2), (2.3) and current relations (2.4), (2.5) become

self-adjoint. This also has an important impact on the use of

iterative schemes for the solution of the evolving linear systems

(cf. chapter 4). However, owing to the enormous range of the

values of u and v, the sets (,n,p) or (Yq ,Y ) have to be
np

prefered for actual computations. We personally favour the set( ,n,p)...--

2.4 The Existence of Solutions and Scaling

The basic answer to the question of existence of solutions

can be found in Mock /43/ or under slightly different assumptions

in Bank, Jerome and Rose /5/. Both proofs are based on

Schauder's fixpoint theorem. They are both valid for arbitrarily

shaped domains and boundary conditions of the type previously

described without an interface (ID 3 ={}). Both papers consider

the case of vanishing generation/recombination rate (R-0 in

(2.2), (2.3)). In the setting of Mock (%,u,v) is used as

dependent variables. The equations are scaled so that the

intrinsic carrier density ni, the thermal voltage Ut and the

ratio elementary charge/permittivity are equal to unity. Thus,

combining the continuity equations (2.2), (2.3) and current

relations (2.4), (2.5), we have the system:

div grad q- e .u - e-.v - c (2.12)

div (e0.grad u) - 0 (2.13)

div (e--grad v) 0 (2.14)

-6-
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Then a map MOP 4 y is def ined (details in /43/ or /4/) such

that the evaluation of M requires the solution of (2.13) and

(2.14) and a fixpoint III of M (4(Y)=W together with the
* .according functions (u,v) is a solution of the whole system

(2.12)-(2.14). The existence of a fixpoint is shown by

Schauder's fixpoint theorem. Questions concerning the degree of

smoothness of these solutions (the existence of derivatives) are

discussed in /42/.

However, Schauder's theorem is not constructive and does not

indicate that iterating the map M will actually lead to the

fixpoint. Moreover, it does not give any information about the

structure of the solution which is of vital interest for actual

computations. Since the dependent variables in the system

(2.1)-(2.5) are of different order of magnitude and show a

strongly different behaviour in regions with small and large

space charge the first step towards a structural analysis of

(2.1)-(2.5) has to be an appropriate scaling. A standard way of

scaling (2.1)-(2.5) has been given by De Mari /14/. There qY is

scaled by the thermal voltage Ut, n and p are scaled by ni
(similar to Mock /43/) and the independent variables are scaled

such that all multipying constants in Poisson's equation become

unity. Although physically reasonable this approach has the

disadvantage that n and p in general are still several orders of

magnitude larger than Y. A scaling which reduces W, n and p to

the same order of magnitude has been given by Vasiliev'a and

Sutuzov /65/. This approach makes the system (2.1)-(2.5)
accessible to an asymptotic analysis which is given together with

applications in /40/, /41/ and /39/. There n and p are scaled by

the maximum absolute value of the net doping C and the

independent variables are scaled by the characteristic length of

the device. More precisely the following scaling factors are

employed.

quantity symbol value

x 1 max(x-y), xy in D

4P Ut k.T/q (2.15)

n,p maxiCI

-7-
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After scaling the equations become:

A 2 .div grad - n - p - C (2.16)

div ( grad n- n-grad ) -- R

div ( grad p + p-gradY) in-R

Here, for simplicity only, P and Jp have been assumed to be
np

constant. It should be noted that the following analysis also

holds if the usual smooth dependence of JOn and p on n, p and .

grad W e.g./54/ is assumed. Since the independent variable x has

been scaled, equations (2.16) are now posed on a domain Ds with

maximal diameter equal to one. The small constant A2 multiplying
the Laplacian in (2.16) is the minimal Debye length of the

device:

12.d

1 and d are defined in (2.15). Thus for high doping (1>>l)

A2 will be small. For instance for a silicon device with

characteristic length 25Pm and d-10 2 0cm-3 we compute for 2 at

approximate room temperature T=30OK: ;2-4.10-10.

R denotes again the scaled generation/recombination rate.

In the analysis given in /41/ the usual Shockley-Read-Hall term

has been used which after scaling is of the form:

rx4
R - n - (-A) , "/2 (2.18)

n + p + 2(A)
2

R is in general a (not necessarily mildly) nonlinear

function of n,p and gradllJ. Thus different models of R may

influence the analytical results quite drastically. This is

obviously to be expected as in many operating conditions the

device behaviour depends strongly on the net

generation/recombination R.

-8-
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2.5 The Singular Perturbation Approach

(2.16) represents a singularly perturbed elliptic system

with perturbation parameter A. The advantage of this

interpretation is that we can now obtain information about the

structure of solutions of (2.16) by using asymptotic expansions:

In the subdomains of Ds where the solutions behave smoothly we

expand them into power series of the form:

w(xA) Ew(x) , wI, n,p)T (2.19)
1-0

which implies a smooth dependence on A. C - the scaled doping -

is smooth in these subdomains and exhibits a sharp transition

across tr.e pn-junctions in the device. For the case of an abrupt

junction this behaviour is represented by a discontinuity across

an n-l dimensional manifold r:(x=x(s), s of Rnl) in the device.

Thus r is a point in 1 dimension, a curve in 2 dimensions and a

surface in 3 dimensions. Of course one curve or surface has to

be used for each junction. Since the procedure is the same for

each of the junctions it is demonstrated only for one junction.

In the case of an exponentially graded doping profile C consists

of two parts:

C C" + C ^  (2.20)

where C-and C^ are discontinous, C- is piecewise smooth and C^ is

exponentially decaying to zero away from r. In the vicinity of P
the expansion (2.19) is not valid and has to be supplemented by a

"layer" term acording to the singular perturbation analysis:

00

w ,) Ew() + w1(st/A).A0' w-(W,n,p)T (2.21)

i-0

-9-
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Here the following coordinate transformation has been

employed: For a point in the vicinity of P s denotes the

parameter value at the nearest point on P and t denotes its

distance perpendicular to P (cf. Fig. 1). Thus the solution of

the semiconductor equations exhibits internal layers at

pn-junctions.

The w- and w^ in (2.21) can now be determined separately and

the structure of the solution is given by its partition into the

smooth part [w7-1 i and its rapidly varying part w iA'. w- has

to satisfy the reduced equations: p

0 - n; - P- "C~ (2.22)

div (grad n; - no.gradqro ) =-R (2.23)

div (grad p; + po'gradl) =-R- (2.24)

For the sake of simplicity but without loss of generality
the mobilities P and Jp have been assumed to be constant.

n p
(2.22)-(2.24) is subject to the boundary conditions (2.6)-(2.9).

Of course the condition of vanishing space charge is redundant

with (2.22). Since C- is discontinous at P and (2.22)-(2.24)

represents a second order system of two equations four "interface
conditions" have to be imposed at .They are of the form:"

x. -, _ n e - (2 .25 )

xx- ,, + (2.26)

JL-
x 1 (2.27)

where wl -_ and wl-+ denote the onesided limits of w as tends to
P from each side. nj denotes the unit normal vector on P. J 0

and 1J- are the zeroth order terms of the smooth parts of the
(scaled) electron and hole current densities.

-10-
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agrad n - na-grad Vr
no 0(2.29)

P- grad p; + p.grad r (2.29)

(2.22)-(2.24) together with (2.25)-(2.28) and the boundary

conditions (2.6)-(2.9) define the reduced problem whose solution

is an 0()) approximation to the full solution away from r. As we
will see in the next chapter the reduced problem is a useful tool

for the development and analysis of numerical methods, since it

(especially the conditions (2.25)-(2.28)) has to be solved

implicitly by any discretisation method which requires a

reasonable number of grid points.

The equations for the rapidly varying parts wj reduce to

ordinary differential equations. That means that only

derivatives with respect to the ".fast" variable t/ occur. Since'

the rate of decay of w^ depends heavily on WP the width of the

layer grows with the applied voltage; a fact which is absolutely
well known by device physicists, but which becomes nicely

apparent by the singular perturbation approach.

3. Numerical Solution of the Semiconductor Equations

In this chapter we discuss some of the problems occuring in
the numerical solution of the semiconductor equations and the
analysis of existing numerical methods. From the viewpoint of
numerical analysis there are essentially four major topics to be
considered. The first one is the type of discretisation to be
used. There exist programs for both Finite Element and Finite
Difference discretisations of the system (2.1)-(2.5). As
outlined in the previous chapter the solution exhibits a smooth

behaviour in some subregions of the domain whereas in others it

varies rapidly. Thus a nonuniform mesh is mandatory and adaptive
mesh refinement is desirable. So the second topic is the
question how to set up the mesh refinement algorithm i.e. which
quantities have to be used to control the mesh. Each type of

-11-
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discretisation will lead to a large sparse system of nonlinear

equations and so the solution of this system is the third topic.
As fourth topic we discuss linear equations solvers which have to

be used in topic three. For topics one to three many methods

have been designed especially for the semiconductor equations.

These points will be discussed in this chapter. For topic four

standard numerical analysis is commonly used and so its

discussion will be deferred to chapter four. For the sake of

simplicity in nomenclature we shall only consider the

two-dimensional case in this chapter. However, all results given

in the following can be generalized to three dimensions in a

straightforward manner. So, the equations are posed in a domain

D of O2 and - (x,y)T denotes the independent variable.

3.1 Discretisation Schemes

Using Finite Elements or Finite Differences one has to take

into account that Poisson's equation (2.1) is of a different type

than the continuity equations. Poisson's equation - in the

scaling of Markowich /40/ using the variables (1,u,v)

X2 .div grad W = eW.u - e-W.v - C (3.1)

is a singularly perturbed elliptic problem whose right hand side

has a positive derivative with respect to W. Thus it is of a

standard form (as discussed in e.g. /22/) except for the

discontinous or exponentially graded term C. Equations of that

type are generally well behaved and it suffices to apply a usual

discretisation scheme. In the case of Finite Differences

equation (3.1) is discretized by:

12"(div gradh* ij nij - Pij- C(xipYj) (3.2)

-12-
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x

zi+1/2, j (ci+lj-Yi,j)/hi

(3.3) I

E* ( -'Ij) /kj
i,J+l/2 -Ii,j+l i,jj

hi - xi+l-xi, k- y+1-yj

(div grad q, - 2 -(Ex/ - EX )/(h+h) +
iji+l/2,J i-1/2,j''i i-i

+ 2. lSJ+1/2 - EYJ_1/2 )/(k +kj-1 )  (3.4)

Here nij and pij denote the approximations to i, n and

p at the gridpoint (xjY). Ei+ 1/2,j denotes the value of OW/Ox

at (xi+1 / 2 -(xi+xi+Q)/2, yj). Eij+/2 denotes the value of '/Sy

at (xi  Yj+l/2-(yj+Yj+,)/2). If one of the neighbouring

gridpoints (xi+,,yj), (xi_,yj), (xiYj+1 ), (xiYjI) does not

exist - as possible in a terminating line approach /1/, /2/ or in

the Finite Boxes approach /24/ - (3.4) has to be modified. We

will go into some detail concerning these modifications in the

next section. In the case of Finite Elements classical shape

functions can be used (i.e. linear shape functions for triangular

elements, bilinear shape functions for rectangular elements).

It turns out that the discretisation of the continuity

equations is more crucial than the discretisation of Poissons's

equation. The usual error analysis of discretisation methods

provides an error estimate of the form:

max lwh-wl <- c'H (3.5)

T
wh denotes the numerical approximation to w(x,y)-(l,n,p)

H denotes the maximal gridspacing. The constant c will in

general depend on the higher order derivatives of w. The

singular perturbation analysis /41/ shows that derivatives of qt,

n" and p^ in (2.21) are of magnitude O(1 3 ) - ( locally near

the junction (A is defined in (2.17)). /41/ shows also that,

even if a nonuniform mesh is used, the amount of gridpoints

required to equidistribute the error term in (3.5) can be

proportional to X-2 which is of course prohibitive. Therefore a

-13-
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discretisation scheme is needed where the constant c in (3.5) P
does not depend on the higher derivatives of the rapidly varying

terms V, n^ and p^. For the case of Finite Differences such a

scheme was given by Scharfetter and Gummel /50/. They

approximate:

- grad n - n-grad ( (3.6)

div n "JX/Ix + Y R (3.7)

by:
jx

"n+l/2,j ((i+ij'Yi,j)/2)" (ni+l,j-ni,j)/hi -

- (ni, +ni+,j)/2 (i+i,j-i,j,/hi

(3.6)

JY, / r(li,j+,-Pij)/2)" (nij ,-ni j)/kj -

(ni,j+ni,j+,)/2.(ij+.-Pi,j)/k"

r(s) - s-coth(s)

2- 3i-l/ ,)/(h +hj 1
2-(ni+i/2,j - ni 1/2,j /li i_11 +"". 3,

+ Y 2jJyj~, J~~~ )/(k +kj) R (3.9)

x x
denotes the value of Jn at (xi+i2 (x i+x i+

1 1/ 2 ,

yJ). Jni,J+I/2 denotes the value Of Ji at (xi,

)/21. The continuity equation for holes is

discretized analogously. Scharfetter and Gummel gave a physical

reasoning for the derivation of their scheme. Karkowich et al.

/41/ proved that in one dimension the Scharfetter-Gummel scheme

is uniformly convergent. That means that the error constant c in

(3.5) does not depend on the derivatives of r, n^ and p^ in

(2.21) and therefore not on I. For two dimensions /41/ shows

that the choice I(s) - s.coth(s) is necessary for uniform

convergence. Exponentially fitted schemes like the Scharfetter-

Gummel scheme have been analyzed by Kellog /34/, /33/ and Doolan
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/17/ (for different classes of problems). The reason for the
uniform convergence of those schemes is that inside the
pu-junction layers the interface conditions (2.25) and (2.26) are
satisfied automatically if 1gradt" is large and the gridapacing

is not 0Ol).

The results for Finite Difference schemes suggest that a
similiar approach (like the exponentially fitted schemes) should
be used in the case of Finite Elements. This fact has been
intuitively observed by Engel /21/ for the one-dimensional case.
A modeling group at IBM has tried to make use of the Scharfetter- k

Gummel scheme fdr Finite Elements in two and three space
dimensions /9/, /8/, /12/.- However, we have the impression that
their approach needs still quite a bit of analysis, although it
has been used effectively by other )modelists too e.g. /49/.1
Macheck /36/ has tried to develop a more rigorous discretisation
for Finite Elements using exponentially fitted shape functions.
Be uses classical bilinear shape functions for yand

dl(x, Y) = 11 9 Y(x, Y) I I - OP2(x,Y) 1 (3.11)

d2xY = PIx,y) *l- Oh~(~eW
E3 (xy) = 9i(xvy) * (x,Y)

E4(x,Y) = [1 P'I(x,Y)h' (x,Y)

for u, and

P).(I,7) = 11 - l(x,Y)1)il - 92(x,Y)i (3.12)

P2(1,Y) - tlCx,Y) '1 - 12(x*Y)I
P3(x,Y) - epl(x#y) - 92(x,Y)

94(x,Y) - 11 - e(x,Y)I. #2(xy)

for v, where



91 (x, Y) f f(x4I~ (3.13)

92 (x,y) f(Y4,

.l(x,y) - f(x,-

with: f~x,a) - lexplaxl-l)/(expla)-l) (3.14)

The advantage of these shape functions is that they..

accomodate nicely the layer behaviour of the solution. They

4r2~ (X.Y).

degenerate into the ordinary bilinear shape functions when the

electric potential is constant. In order to be able to switch

from coarse to fine grid spacing in different subdomains

transition elements have to be used (as outlined in the next

section). However, no theoretical investigations have been

carried out so far to analyse the uniform convergence properties

of this method.

3.2 Grid Construction

Since subregions of strong variation of W, n and p alternate

with regions where these quantities behave smoothly (i.e. their

gradients are small) different meshsizes are mandatory in these
subregions. Thus the discretisation scheme should be able to

switch locally from a coarser to a finer grid. For the

exponentially fitted (Scharfetter-Gummel) Finite Difference
discretisation schemes this is done by the Finite Boxes approach
/24/. Grid lines can terminate when the mesh is likely to be

coarsened (cf. Fig.2). The point (x1 1 1y4) does not belong to

the mesh. Thus the equations for the point (xi,Yj) have to be
modified since i+lI,., ni+lj and Pi+li are not available. This

is done by proper interpolation between the (j-l)-st and (j+l)-st

y-level. So (div grad 4 ij is approximated by:

-16-
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(div grad q , j

2ollk~ l E+1/2,j l + k iE +1/2,j-ll/k~ l J-1

E .. ,)/(hi+h.) +

+ 2*(Z- E /(k +k4-) (3.15)

i,j+1/2 I/2)/( J
• "ix Ey

E1-1/2.j i, 2  etc. are defined in (3.3). The

continuity equations are approximated by:

2. ((1k -J',-l2,~ + kj xJj /(jk
- kJni+i2 j_.i/lkj+ki)

- Jx )/(h+h ) +

+2* i,+1/2 -J y/(k +k- 1) R (3.16)

Jj 1 /2 ,j n etc. are defined in (3.8). For reasons

of numerical stability only one gridline is allowed to terminate

at a box. This approach is a generalisation of the *Terminating

LineO approach introduced by Adler /1/, /2/ as already mentioned.

In the Finite Element approach of Macheck /36/ transition

elements composed of three triangles are used to coarsen the mesh

locally (cf. Fig.3). Within these triangles a different set of

shape functions has to be used. They are derived by holding the

current densities n and J constant along the edges of an p
triangle similar to the approach of /10/.

In the Finite Element as well as in the Finite Difference

(Boxes) approach the question arises which criteria should be
used to generate the mesh. If the user of a simulation program

has to define his elements or nodes a priori as input parameters,

this could perhaps be done by experience /10/. However, if - as
it is the case for modern user oriented programs - an adaptive

mesh selection is desired mathematically formulated criteria are

a "sine qua non". Generally such criteria should satisfy two

conditions. Firstly they should not cause the program to

construct more gridpoints/elements than necessary to achieve a

certain accuracy. Secondly they should guarantee that a

-17-
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N.

prescribed relative accuracy 4 is really achieved once they are

satisfied. A usual way to design adaptive mesh refinement

procedures is to equidistribute the local truncation error of the

discretisation scheme. In the case of Finite Differences this

error is proportional to the meshsize and the third and fourth

:-. derivatives of IV, n and p. Markowich /41/ however showed that it

is practically not possible to equidistribute this quantity. In

the case of a simple MOS-transistor O(- 2 -2 ) gridpoints would be

required. On the other hand the singular perturbation analysis

shows that the solution of the difference scheme approximates the

solution of the reduced problem (2.22)-(2.24) even if this

criterion is not satisfied inside the layer regions (inversion

layer and space charge regions). Therefore the quantity to be

equidistributed is the discretisation error of Poisson's equation

(i.e. the partial derivatives of the space charge times the

meshsizes). This equidistribution can be relaxed inside the

pn-junction layers by e.g. simply limiting the number of

gridpoints there.

3.3 Linearisation Schemes

Each discretisation scheme (Finite Differences or Finite

Elements) will lead to a large sparse system of nonlinear

equations to be solved. The theory of iterative methods to solve

these equations is to a large extent independent of the used

discretisation and so it is convenient to view the whole problem

as solving a nonlinear system of equations iteratively by solving

linear systems. The existing numerical methods can essentially

be divided into two classes: The first approach, a block

nonlinear iteration algorithm, is due to Gummel /29/ and uses the

fact that the current relations are linear in the variables u and

v (as defined in (2.11)). In these variables the equations

become (again we use the scaling of /36/):

-18-



p.p

2-div grad e- - -,.v - C (3.17)

_A

div Jp -R, J -e-W-grad v (3.19)

Gwmmels approach works as follows: Given (qI, u,v)k n1 is

computed by solving:
- 1 c+l ..J+l"

e--div grad -_ e"  .vk - C (3.20)

subject to the appropriate boundary conditions. Then uk+l
and v k +l are computed from:

R ad k+l *lC grk+l (3.21)

div 3 k+l R(grad +l,uk vk), 0 grad un n

#4.1 (3.22)
div .k+l --R(grad J+lkk) .k+l a-e .grad vk~l

p -p

together with the boundary conditions for u and v. (3.21)

and (3.22) are two decoupled linear equations for uk+l and vk+l.

Poissons's equation (3.20) is nonlinear in this setting and

therefore it has to be solved iteratively itself in each step by
a Newton like method. Sine* Newton's method is an inner
iteration within the overall iteration process (3.20)-(3.22) it

may not be necessary to let this inner iteration "fully converge"
/27/. It could for instance be considered to do only one Newton

step for each iteration. This would lead to the linear equation:

12.div grad qO+l -(eqo.uk + e- ~ )-4+ 4

+ eq.uk - e .vk - C (3.23)

instead of (3.20). The advantage of Gummels's method is obvious.

(3.20)-(3.22) can be solved sequentially which decreases the

required amount of storage and computing time drastically for
each step. However, bad convergence properties can be observed

in the case of high currents. This is explained by viewing

-19-
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(3.20)-(3.22) as iterating the map M:(uk,vk) (uk+u,vk+l) where

the evaluation of M involves the solution of (3.20). Then the

norm of the linearisation of M (as an operator acting in the

appropriate spaces) at the fixpoint M(u ,v )-(u ,v ) is
proportional to the current densities /42/.

The second approach to the solution of the nonlinear

equations (2.1)-(2.5) is a damped modified Newton method. To

solve the general equation F(x)-O one computes the sequence <xk>

by:

k.f- k F(xk), xk+l - xk + tk.k (3.24)

For the usual Newton method Mk - F'(xk) and tk - 1 holds.

Bank and Rose /4/ have given criteria for the choice of the
kdamping parameters t which guarantee global convergence.

Moreover they investigate how well jk has to approximate the

classical Newton step in order to get a certain rate of

. convergence. They obtain that the rate of convergence is p

(l<p<2) if:

Itk'dk + Fxk)I - O(IF(xkFlp) (3.25)

holds asymptotically for k + o. Alternatively Bank and Rose /3/

suggested M k - AkI + F'(xk) where Ak is proportional to IF(xk)I.
Franz /24/ tested this method with good success. However, he

additionally chooses damping parameters tk according to Deuflhard

/15/, /16/.

Since this approach has the disadvantage that all three

equations are solved simultaneously - and therefore the storage

requirements are fairly large - we suggest a Block-Newton-SOR

method /24/. Defining F-(F1 ,F2 ,F3) Newton's method at step k

-20-
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(3.26)

F2 IF2 IF2  i k - F2( ,nk,O)

IF3 F3 I3 jpkj P3 (,nk,pk)

Under the assumption that the Jacobian is definite one can

use a classical block iteration scheme (iteration index m) for

the solution of the k-th Newton step:

(3.27)

Sn k m eo (3.27) k m

(3.28

.o.- * nk~pk - 2 k.(qk,nkpk) - 0 0 kn

*. n ., - knkPk) 0 0 1 - ,1

Since the coefficient matrix of (3.27) is block lower

triangular one can decouple the elimination process into three
linear systems (3.28)-(3.3G) which have to be solved

sequentially.

(3.28)

'Fk j~m~l - Fl(q#,nk,pkc) - FkInM - f pla

(3.29)
IF2 k IF2 k Fk

inkatll - F2 (P,nk,pk) - .#4W1l -T pk

(3.30)

OF3 k OF3 k O nkfl
k. a)km+l .- F3 *,nk,pk)- . O4km+l - F nkm+l

in
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This iteration method has (like Gummel's method) the

advantage that the equations can be solved sequentially. To end

up with the Block-Newton-SOR method one has to resubstitute the

series expansions on the right hand side of (3.28)-(3.30) and to

introduce a relaxation parameter _aft

(3.31)

.401 - (4g.

(3.32)

* k . dnk' - -- F2 *44h l, nk,pk.4m)

(3.33)

-pn~ -W - F3 (a444Wfl ,nk4nM*l ,p1)

This method Converges linearly /48/. However, we still have

to perform thorough investigations in order to properly judge the
convergence properties.

4. Solution of Linear Systems

For any of the linearization procedures which have been

outlined in the last chapter a large sparse linear equation

system (4.1) has to be solved repeatedly.

A'x - b (4.1)

A has been derived by linearizing discretized PDEs. Hence A

has only five to nine nonzero entries per row and block (the

blocks are defined in (3.26)); A is very sparse. For the

solution of these special types.of linear systems of equations

two classes of methods, can, in principle, be used: direct

methods which are based on elimination and iterative methods. An

-22-
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excellent survey on that subject has been published recently by

Duff /18/. Classical Gaussian elimination is not feasiblq for

our systems of equations because the rank of A in (4.1) is very
large and A has many coefficients which are zero. Therefore,

modifications of the classical Gaussian elimination algorithm
have to be introduced to account for the zero entries. There

exist quite a few activities on that subject (c.f. /19/) and
powerful algorithms which t::eat the nonzero coefficients only are

available (so called sparse matrix codes). Another serious

drawback of direct methods lies in the fact that the upper
triangular matrix which is created by the elimination process has
to be stored for back substitution. This matrix has usually more

nonzero entries than the matrix A. Therefore, memory requirement
of direct methods is substantial. One advantage of the linear

systems obtained from the discretised semiconductor equations is

that no pivoting in order to maintain numerical stability is
needed. In spite of all drawbacks of direct methods, their major

advantage is high accuracy of the solution. However, we feel
that for the semiconductor problems iterative algorithms are to

emphasize. Nevertheless we and many others have observed
difficulties with respect to the convergence speed of iterative

methods, so that the direct methods, which require an exactly
predictable amount of computer resources, will always stay in

consideration.

The fundamental idea of relaxation methods (which are the

best established iterative methods) is the splitting of the
coefficient matrix A (4.1) into three matrices D, E, F (4.2).

A D-E - F (4.2)

D denotes the diagonal entries of A; -E denotes a lower
triangular matrix which consists of all sub-diagonal entries of
A; and -F denotes an upper triangular matrix which consists of

all super-diagonal entries of A.

With an arbitrary non singular matrix B which has the same
rank as A the linear system (4.1) can be rewritten to (4.3):

-23-
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B-x + (A-B)'x b (4.3)

One obtains an iterative scheme by setting:

k+1B'x b - (A-B)'xk (4.4)

(4.4) can be solved for xk+l
-

xk+l = (I-B-IA)-xk + B-b (4.5)

The scheme (4..5) will converge if condition (4.6) holds:

U(I-B-IA) ( 1 (4.6)

(4.6) is a necessary and sufficient condition where

denotes the spectral radius /64/. Any relaxation method can be

derived by differently choosing the matrix B from the splitting
of A (4.2). The simplest scheme, the point-Jacobi method, uses D

for B. Matrix D is a diagonal matrix and, therefore, is easily

invertible. The Gauss-Seidel method uses D-E for B. The matrix
D-E is a lower triangular matrix. Therefore one has only to

perform a forward substitution process for its inversion. The
successive overrelaxation method (SOR) uses a parameter W within

the range ]0,2[. The iteration matrix B is defined:

B iD/W- E - (4.7)

Since B is again a lower triangular matrix, its inversion is

instantly reduced to a substitution.

The major advantage of these iterative methods lies in their

simplicity. They are very easy to program and demand only low

memory requirement. As already noted, they converge if condition -

(4.6) holds. However, this is generally difficult to prove. A
sufficient condition for convergence is that A is positive

definite (4.8) which is the normal case for five-point-star

discretized PDEs.

T. A-x ) 0 for all x#0 (4.8)
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It should be noted again here that the current relations and

continuity equations are not self adjoint if (In,p) are used as

variables (see (2.10), (2.11)). However, the transformation:

n -eWu, p= e' v (4.9)

results in a similarity transformation of the iteration matrix in

(4.6). Thus the spectral radius of the iteration matrix is not

influenced and the same convergence properties are obtained as if

the system had been discretized in its self adjoint form with

(Yu,v) as variables.

Some point-iterative schemes can by accelerated quite

remarkably with the conjugate gradient method or the Chebyshev

method. An excellent survey on these topics can be found in
/28/.

Various activities can be observed for the development of

more powerful algorithms with the advantages of iterative

schemes. One of the best known algorithms which has been

established in semiconductor device analysis is Stone's strongly

implicit procedure /58/. Stone's idea was to modify the original

coefficient matrix A by adding a matrix N (whose norm is much
smaller than the norm of A) so that a factorization of (A+N)

involves less computational effort than the standard

decomposition of A. Assuming this has been done, the development
of an iterative procedure is then fairly straightforward because

the equation can be written as:

(A+N)-x (A+N)'x + (b-A-x) (4.10)

which suggests the iterative procedure:

(A+N)'x - (A+N)-x + (b-A.xk) (4.11)

When the right hand side is known and if (A+N) can be

factorized easily, (4.11) gives an efficient method for directly
solving for xk+l. Furthermore, one would intuitively expect a

rapid rate of convergence if N is sufficiently small compared to

-25-

+L



.- ,. , -. .
•

. .- *

A. We will refrain from explaining in detail Stone's suggestion

of how to choose the perturbation matrix N because this has been

done thoroughly in many publications e.g. /23/, /55/, /58/. A

major disadvantage of Stone's method is that it is only 1

applicable for linear systems obtained by a classical Finite

Difference discretisation. It is not applicable for systems

obtained by the Finite Boxes approach or the general Finite

Element approach.

There exist a few algorithms which are similar to Stone's

method in terms of underlying ideas. The most attractive are the

method of Dupont et al. /20/, the "alternating direction

implicit" methods e.g. /6/, /23/, /66/ and the Fourier methods

/57/, /64/. However, most of these sophisticated algorithms lack

general applicability.

No matter which iterative method is used one has to deal

with the question of an appropriate termination (convergence)

criterion. Usually (4.12) is applied with a properly chosen

relative accuracy C:

k+lxkl 4Cxk+l1(.2

Since increments still accumulate when (4.12) is already

satisfied we suggest to use (4.13) instead of (4.12):

xxk+l-xkI C €'(xk+ l  (I-f(G)) (4.13)

lim k+l k k k-lt(G) can be estimated as k,.Ox -x 1/Ix -x I.

One disadvantage of all strongly implicit methods and also

the direct methods is that they cannot be implemented efficiently

on a computer with a pipe-line architecture (vector processor). -,

Some comments on that subject have been given in /18/.

L.
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5. A Glimpse on Results

As an illustrative example a relatively simple structure, a

two dimensional diode, is chosen. Fig. 4 shows the doping

profile as birds-eye-view plot. A substrate with 1014 cm- 3

acceptor concentration and an exponentially graded n-region with

10 19cm- 3 maximum doping is assumed. The initial mesh is

automatically generated from the doping profile and the geometry

definition. The simulation domain (device geometry) is a square

of 1001 times 100Pm size. At the n-region an ohmic contact with

length 20pm is assumed. The substrate is fully contacted. The

initial mesh for a Finite Boxes program is shown in Fig. 5 and

for a Finite Element program in Fig. 6. The point allocation is

identical for both representations. The grid consists of 121

points versus 178 when all gridlines are extended throughout the

device. This clearly demonstrates the advantage of the Finite

Boxes approach. In Finite Element representation one has to deal

with 80 rectangular elements and 17 transition elements which

consist of 51 triangles.

Fig. 7 shows the final grid for an operating condition of

0.7V forward bias in Finite Boxes representation. This mesh is

obtained after several adaption processes using the criteria

given in chapter 3. It consists of 270 points (versus 480 for

the classical approach). In Fig. 8 the potential distribution is

drawn. From this plot and even better from the electron density

(Fig. 9) one nicely can deduce the effects of high injection.

E.g. the substrate is flooded with carriers. Fig. 10 shows the

magnitude of the electron current density. The peak value is
2

about 180 A/cm . The sharply pronounced peak which exists at the
transition of the Dirichlet boundary condition to the Neumann

boundary condition corresponds to a singularity of the carrier

densities. Physically interpreted this effect is well known as

contact-corner-current-crowding.

Fig.- l shows the final grid for an operating condition of

-20V (reverse) bias in Finite Element representation. This mesh
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consists of 363 points (625 for classical Finite Differences)

which correspond to 277 rectangular elements and 41 transition

elements (123 triangles). The electron density for this

operating point is given in Fig. 12. One nicely observes the

depletion region and the typical shape of the drop of the

electron density in that region owing to thermal generation. In

Fig. 13 the magnitude of the electron current density is drawn.

The singularity at the contact corner is, although it still

exists, not so pronounced. Note that there are about seven

orders of magnitude difference in the peak value compared to Fig.

10.

6. Conclusion

In this paper we have presented an analysis of the steady

state semiconductor equations and the impact of this analysis on

the design of device simulation programs. By appropriate scaling

we have transformed the semiconductor equations into a singularly

perturbed elliptic system with nonsmooth data. Information

obtained from the singular perturbation analysis has been used to

investigate stability and convergence of discretisation schemes
with particular emphasis on the adaptive construction of

efficient grids. We have reviewed algorithms for the solution of

nonlinear and linear systems of the discretized semiconductor

equations. An example has demonstrated the power and flexibility

a device simulation program can achieve when using the

information we have presented for program design.

Acknowledgement

This work is sponsored by the "Fonds zur Foerderung der

wissenschaftlichen Forschung" Project No. S22/11, by the Research

Lab. of Siemens AG Munich and by the United States Army under

Contract No. DAAG-29-80-C-0041. Helpful discussions with

Dr.P.Markowich and Prof.Dr.H.Poetzl who also critically read the

manuscript were highly appreciated. We should also like to thank

Dipl.Ing.A.Franz and Dipl.Ing.G.Franz for providing the computer

plots.

-28-

.. °- -.



7. F, F F - 7 T!61

* Figure captions

Fig. 1 Local Coordinates of the Layer Solution

.d..

Fig. 2 A-Typical Finite Boxes Configuration

Fig. 3 A Transition Element to Coarsen a Mesh

-- 3

Fig. 4 Doping Profile (cm-31 (log.)

Fig. 5 Initial Mesh in Finite Boxes Interpetation

IiiI

Fig. 6 Initial Mesh in Finite Element Interpretation

Fig. 7 Final Mesh for 0.7V Forward Bias (Finite Boxes)

Fig. 8 Potential distribution (0.7V) [V] (lin)

Fig. 9 Electron concentration (o.7V) (cm s (log)

2Fig. 10 Electron Current Density (.7V) [A/cm I (in)

Fig. 11 Final Mesh for 20V Reverse Bias (Finite Elements)

Fig. 12 Electron Concentration (-20V) [cm - 3 1 (log)

2
Fig. 13 Electron Current Density (-20V) [A/cm (lin)
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